

Studio della variabilità genetica del Setter italiano tramite analisi dei dati genealogici

Premessa

In termini generali la variabilità genetica rappresenta il "serbatoio" di geni di una popolazione (razza) essenziale per garantire alla stessa un'adeguata adattabilità.

In ambito naturale l'adattabilità si esprime principalmente verso le mutabili condizioni ambientali e l'adeguatezza della risposta selettiva (naturale) si concretizza nella sopravvivenza dell'individuo e nella sua capacità di riprodursi (fitness). In ambito di allevamento l'adattabilità è finalizzata al raggiungimento degli obiettivi di selezione (artificiale) insieme ad una adeguata efficienza riproduttiva (fitness). In sintesi, sia a livello naturale che di allevamento, la variabilità genetica è un imprescindibile presupposto per la "sopravvivenza" a breve o a lungo termine di una popolazione.

Nelle piccole popolazioni allevate, quali alcune razze canine, il monitoraggio e la conservazione della variabilità genetica risulta ancora più importante, dal momento che la riproduzione non casuale di un limitato numero di riproduttori, soprattutto se fra loro imparentati, comporta una maggiore probabilità di fissazione di alcuni alleli in omozigosi con conseguente perdita di variabilità genetica. Questo fatto comporta, non solo, una diminuita possibilità di applicazione con successo degli schemi di selezione, ma anche il rischio di manifestazione di caratteri negativi (produttivi e/o patologici) legati alla fissazione in omozigosi di alleli recessivi, il tutto associato ad una riduzione di fitness, intesa come calo delle performance riproduttive.

Una stima indiretta di variabilità deriva dalla valutazione del coefficiente di inbreeding (sinonimo di consanguineità o inincrocio), tramite l'analisi della genealogia della popolazione.

Da un punto di vista genetico il **coefficiente di consanguineità o di inbreeding** (F), riferito al singolo individuo, misura la probabilità che un soggetto sia omozigote per un allele identico per discendenza. F è pari alla metà del **coefficiente di parentela** dei genitori, che a sua volta misura, riferito a due individui diversi, la probabilità che essi condividano un allele identico per discendenza da uno o dall'altro dei due. Il coefficiente di inbreeding esprime la frazione media del patrimonio genetico che un individuo riceve, identico sia dal padre che dalla madre in virtù del fatto che i genitori erano imparentati. A livello indicativo nella seguente tabella si riportano i coefficienti di parentela per i principali rapporti di parentela.

Parentela				
Rapporto	Coefficiente			
Gemelli monozigotici	1,00			
Genitore-Figlio	0,50			
Fratelli pieni	0,50			
Gemelli dizigotici	0,50			
Mezzi fratelli	0,25			
Nonno-Nipote	0,25			

L'inbreeding si accumula se gli accoppiamenti fra parenti vengono ripetuti nelle generazioni, mentre la consanguineità di un individuo non si trasmette alla discendenza se questo viene accoppiato ad un soggetto non parente. Pertanto l'allevatore, per la produzione di soggetti da rimonta (destinati a diventare riproduttori), deve verificare la parentela fra il maschio e la femmina utilizzati! Circa il livello critico del coefficiente d'inbreeding, partendo dal presupposto che più è basso e meglio è, risulta necessario prestare assoluta attenzione per valori superiori a 0,10.

Dallo studio del livello d'inbreeding è quindi possibile delineare strategie d'intervento adeguate al suo mantenimento o al suo abbassamento, in funzione del livello riscontrato, e questo tramite la gestione degli accoppiamenti programmati, almeno per i riproduttori maggiormente richiesti.

L'analisi svolta

Obiettivo

Obiettivo dello studio è la verifica della variabilità genetica dei Setter italiani, principalmente tramite l'analisi del livello di consanguineità, utilizzando i dati del libro genealogico.

Finalità è la caratterizzazione della situazione delle popolazioni attuali, anche in vista di possibili future programmazioni degli accoppiamenti fra i principali riproduttori della razza.

Attività eseguita

Le attività realizzate, di seguito descritte, sono state le seguenti:

- ✓ validazione del database;
- ✓ analisi delle genealogie per singola razza di Setter italiano;
 - o studio dei riproduttori e della loro progenie;
 - o studio della consanguineità sull'intera popolazione;
 - o confronto fra soggetti morti e vivi;
 - o valutazione degli stalloni con maggiore incidenza sulla popolazione;
- ✓ considerazioni finali sulla consanguineità dei Setter italiani.

Le razze studiate sono state: Setter Inglese, Setter Irlandese rosso e Setter Irlandese rosso e bianco.

Metodi utilizzati

L'analisi delle genealogie consente di valutare quanti riproduttori sono presenti, di questi quanti sono i fondatori (riproduttori senza ascendenti conosciuti) ed il coefficiente di *inbreeding*. Quest'ultimo è stato calcolato come proposto da Colleau (*Genetics Selection Evolution* 34:409-421, 2002) e da Sargolzaei et al. (*Journal of Animal Breeding and Genetics* 122:325-331, 2005).

L'analisi delle genealogie è stata sviluppata e conseguentemente descritta per singola razza di Setter italiano.

Prima dello studio genetico sono stati validati i data set importandoli in un database relazionale di tipo SQL, sviluppando una serie di query *ad hoc*. Sempre tramite query SQL sono stati approntati i record set utilizzati per gli studi degli andamenti e delle sottopopolazioni volta per volta definite.

Negli studi degli andamenti annuali è stato considerato anche l'anno 2013, pur non essendo completo.

Dapprima è stata sviluppata un'analisi dell'intera popolazione, quindi si è proceduto all'analisi delle sottopopolazioni dei soggetti vivi e dell'intera sottopopolazione della progenie degli stalloni più richiesti.

Il confronto fra soggetti morti e vivi (vivi) è stato sviluppando definendo quale soggetto vivo quello nato dopo il 1 gennaio 2000. Il raggruppamento dei dati è stato sviluppato tramite una variabile dicotomica numerica (0=morto; 1 = vivo). In base al raggruppamento dei dati è stata sviluppata l'analisi della consanguineità e della parentela.

La valutazione degli stalloni con maggiore incidenza sulla popolazione (**TopSire**) è stata valutata conteggiando i soggetti generati dai maschi presenti nel data set. I risultati sono stati organizzati (quando possibile) in classi di frequenza, quindi sono stati individuati i maschi che incidono maggiormente nella popolazione avendo generato un numero di soggetti elevato. La soglia numerica è stata definita per le varie razze in baso alla numerosità della popolazione e viene riportata nella descrizione dei risultati per razza. E' stata quindi definita la sottopopolazione relativa alla progenie degli stalloni più utilizzati e su questa è stata sviluppata l'analisi della consanguineità e della parentela.

Validazione del database

La richiesta del data set genealogico del Setter è stata effettuata al CED dell'ENCI (in data 24/09/2013), indicando quali dati necessari all'analisi quelli relativi alla identificazione del soggetto, del padre, della madre, alla data di nascita e al sesso.

Quali dati opzionali venivano richiesti l'identificativo del proprietario, la data di iscrizione e la descrizione del mantello.

L'estrazione dei record è stata fornita in data 27/09/2013, quale cartelle Excel e file di testo delimitato da virgole, in forma compressa (.ZIP).

I setter sono suddivisi in quattro razze, ognuna con la propria codifica, di seguito riportata.

002	SETTER INGLESE
006	SETTER GORDON
120	SETTER IRLANDESE ROSSO
330	SETTER IRLANDESE ROSSO-BIANCO

L'estrazione dei record dal database ENCI è avvenuta per razza, così come le elaborazioni verranno sviluppate e descritte per razza.

I **file ricevuti** sono stati i seguenti.

Nome	Tipo	Record (n)
Setter002.csv	File testo delimitato da [,] con stringhe non delimitate	666.200
Setter006.xls	Cartella Excel	17.642
Setter120.xls	Cartella Excel	44.793
Setter330.xls	Cartella Excel	204

La **struttura record** dei file era la seguente.

Nome del campo	Descrizione	Componente
LL_CANE	Matricola del soggetto	
NOME_CANE	Nome del soggetto	
DATA_NASCITA	Data di nascita del soggetto	
SESSO	Sesso del soggetto	
DATA_ISCRIZIONE	Data dell'iscrizione	Concologia
DS_MANTELLO	Descrizione del mantello	Genealogia
LL_MADRE	Matricola della madre	
NOME_MADRE Nome della madre		
LL_PADRE	Matricola del padre	
NOME_PADRE	Nome del padre	
ID_PROPRIE	Identificativo del proprietario all'atto dell'iscrizione	
NOME	Nome del proprietario	
INDIRIZZO1	Indirizzo del proprietario	Dropriotorio
LOCALITA1	Comune del proprietario	Proprietario
CAP1	CAP del proprietario	
PROVINCIA1	Provincia del proprietario	

I **campi** utilizzati sono stati i seguenti: LL_CANE, DATA_NASCITA, LL_MADRE, LL_PADRE, ID_PROPRIE, PROVINCIA1.

Dalla valutazione complessiva dei record set sono scaturite una serie di incongruità.

Alcuni record erano errati, in quanto risultavano una replicazione di CANE, oppure lo stesso soggetto era registrato sia come MADRE che come PADRE.

Di seguito si riportano, a titolo di esempio, matricole d'individui che hanno presentato **problematicità**.

Matricol	e	Problema
Razza 120		
ES1076199		Soggetti registrati come madre e
Razza 002		
ST300117		come padre
ST408309		
Razza 120	ST148740	
ST104009	ST148824	
ST150726	ST149029	
ST204638	ST150230	
ST214610 ST215971	ST150260 ST200030	
51215971 Razza 002	ST200030 ST200775	
ST0449022	ST200773	
ST054069	ST201076	
ST061329	ST201101	
ST095468	ST201609	
ST107337	ST201661	
ST109290	ST201840	
ST110106	ST201841	
ST116282	ST201972	
ST121229	ST202663	
ST122145	ST202859	
ST126068	ST204278	
ST129707	ST204541	Soggetti registrati due volte
ST131308	ST204912	
ST133058	ST205354	
ST133939	ST205880	
ST134008 ST134164	ST205916 ST206405	
ST134212	ST206965	
ST134631	ST200905	
ST135821	ST207659	
ST135944	ST207973	
ST136751	ST208300	
ST142174	ST209163	
ST143178	ST209603	
ST144152	ST209611	
ST1 44 737	ST210278	
ST145748	ST211903	
ST146668	ST213397	
ST147432	ST220852	
ST147780		
ST148312		
ST148402		

Nell'ambito della validazione del dataset relativo al Setter Irlandese (120), la matricola ES1076199 è stata trovata ricorsiva essendo la stessa del padre

ES1076199, ES1076199, ES1076198

pertanto il record è stato corretto ricodificando il padre come mancante

ES1076199, , ES1076198.

Setter Inglese (002)

Dataset

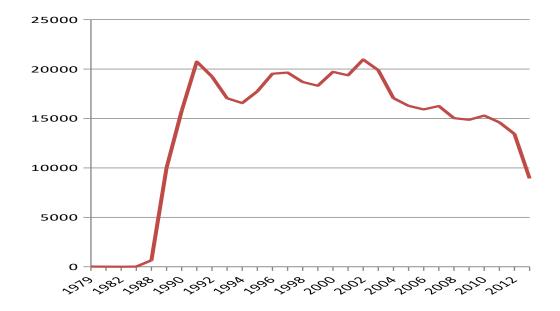
La codifica utilizzata per il campo LL_CANE presentava diverse sottostringhe iniziali di due caratteri, con preponderanza di "ST" e di "LO", come da seguente tabella.

Tipo matricola	n	%
ES	2.597	0,4
LI	81	0,0
LO	275.659	41,4
ST	379.337	56,9
ZZ	8.526	1,3
TOTALE	666.200	100,0

La data di nascita non era determinata per 11.160 individui, pari al 0,02 % del totale.

Al fine di valutare la completezza del dataset è stata valutata la situazione della registrazione degli ascendenti (LL_PADRE, LL_MADRE) per individuo, evidenziando che circa il 99,1% dei record risultava completo.

Ascendenti conosciuti per soggetto		n	%
PADRE MADRE			
		5.785	0,9
		395	0,1
		7	0,0
		660.013	99,1


Dall'analisi della tabella risultano 6.187 (0,09%) **fondatori** (individui dei quali non sono registrati padre e/o madre).

Nella seguente tabella sono riportate le **iscrizioni** per anno.

Anno	Iscriz	ioni
Anno	n	%
1979	18	0,0
1980	7	0,0
1982	1	0,0
1987	14	0,0
1988	648	0,1
1989	10008	1,5
1990	15772	2,4
1991	20745	3,1
1992	19242	2,9
1993	17047	2,6
1994	16556	2,5
1995	17740	2,7
1996	19528	2,9
1997	19644	2,9
1998	18689	2,8
1999	18307	2,7
2000	19720	3,0
2001	19365	2,9
2002	20959	3,1
2003	19881	3,0

2004	17056	2,6
2005	16277	2,4
2006	15912	2,4
2007	16257	2,4
2008	15036	2,3
2009	14861	2,2
2010	15290	2,3
2011	14610	2,2
2012	13433	2,0
2013	8930	1,3
n.d.	244647	36,7
TOTALE	666200	100,0

Nel data set sono presenti 244.647 record mancanti della data di iscrizione, pari al 36,7% del totale dei record.

Considerando che i dati dell'anno 2013 sono incompleti le iscrizioni si mantengono piuttosto stabili negli anni dal 1990 in poi.

Sono state verificate le **registrazioni complete** (2 genitori noti) **per anno** di nascita dei soggetti ed i dati sono riportati nella seguente tabella.

ANNO	Soggetti con 2 genitori noti	Individui senza progenie	ANNO	Soggetti con 2 genitori noti	Individui senza progenie
1965	2 genitori noti	1	1990	20.188	16.293
1966	5	5	1991	19.188	15.505
1967	3	1	1992	18.609	14.761
1968	3	2	1993	17.6 4 3	13.969
1969	9	2	1994	16.587	13.087
1970	4	1	1995	18.400	14.456
1971	31	19	1996	18.108	14.205
1972	44	24	1997	17.738	14.160
1973	33	17	1998	18.160	14.487
1974	127	85	1999	18.358	14.761
1975	2.966	2.262	2000	19.625	15.778
1976	13.687	10.462	2001	19.454	15.926
1977	15.086	11.697	2002	20.653	17.042
1978	15.480	11.934	2003	19.937	16.526
1979	14.761	11.472	2004	16.995	14.100
1980	13.314	10.225	2005	16.144	13.434

1981	14.924	11.520	2006	15.978	13.333
1982	16.423	12.657	2007	16.345	13.943
1983	18.714	14.530	2008	15.001	13.105
1984	19.706	15.319	2009	15.080	13.634
1985	19.773	15.598	2010	15.303	14.316
1986	18.789	14.899	2011	14.624	14.275
1987	20.197	16.080	2012	13.079	13.029
1988	21.215	17.045	2013	7.665	7.665
1989	20.513	16.607	n.d.	5.270	248

Di seguito si riporta la tabella con la ripartizione dei soggetti **registrati per provincia.**

Drovincia	-	0/-	Drovincia		0/-
Provincia	n	%	Provincia	n 2.024	%
FI	31.454	4,7	VE	2.824	0,4
PG	23.895	3,6	RI	2.754	0,4
BS	22.636	3,4	СВ	2.663	0,4
BG	19.882	3,0	PO	2.626	0,4
TV	19.334	2,9	SP	2.603	0,4
VI	18.406	2,8	FE	2.412	0,4
MI	17.045	2,6	LE	2.365	0,4
VR	16.492	2,5	CZ	2.186	0,3
FC	16.476	2,5	CA	2.065	0,3
ВО	16.441	2,5	PE	1.992	0,3
AR	16.121	2,4	FG	1.962	0,3
PI	15.708	2,4	SS	1.944	0,3
NA	13.658	2,1	СН	1.942	0,3
RM	13.490	2,0	BA	1.881	0,3
SI	13.337	2,0	VC	1.856	0,3
AN	11.598	1,7	СТ	1.847	0,3
RA	11.261	1,7	TP	1.786	0,3
RE	11.223	1,7	IM	1.744	0,3
МО	10.275	1,5	KR	1.503	0,2
GE	10.258	1,5	ME	1.503	0,2
UD	10.145	1,5	SO	1.409	0,2
MN	8.995	1,4	TA	1.292	0,2
GO	8.958	1,3	NU	1.263	0,2
PU	8.674	1,3	RO	1.200	0,2
PV	8.663	1,3	VV	1.193	0,2
MC	8.609	1,3	BI	1.118	0,2
CO	7.809	1,2	MT	1.071	0,2
GR	7.514	1,1	OR	802	0,1
CE	7.203	1,1	SR	7 4 5	0,1
CR	7.155	1,1	VB	707	0,1
LI	7.061	1,1	RG	573	0,1
PD	7.017	1,1	BR	563	0,1
SA	6.938	1,0	TS	518	0,1
PR	6.767	1,0	CL	502	0,1
CS	6.744	1,0	ОТ	450	0,1
TO	6.360	1,0	IS	387	0,1
RN	6.309	0,9	AG	367	0,1
VA	5.936	0,9	BT	261	0,0
TE	5.820	0,9	AO	252	0,0
PT	5.810	0,9	CI	172	0,0
AP	5.778	0,9	VS	163	0,0
TR	5.712	0,9	EN	112	0,0
AL	5.656	0,8	OG	95	0,0
FR	5.322	0,8	BZ	88	0,0
PN	5.191	0,8	ES	47	0,0
LU	4.942	0,7	F	11	0,0
CN	4.660	0,7	SM	9	0,0
VT	4.411	0,7	SN	9	0,0
LT	4.359	0,7	BF	6	0,0
		٠,,	-		0,0

BL	4.357	0,7	ВС	5	0,0
MS	4.185	0,6	TI	5	0,0
FM	4.167	0,6	os	4	0,0
MB	4.132	0,6	BU	3	0,0
RC	4.073	0,6	ON	3	0,0
PC	4.008	0,6	TK	3	0,0
LC	3.848	0,6	RV	2	0,0
PA	3.728	0,6	US	2	0,0
SV	3.725	0,6	13	1	0,0
AQ	3.603	0,5	BE	1	0,0
AV	3.516	0,5	Е	1	0,0
NO	3.442	0,5	HR	1	0,0
TN	3.435	0,5	ΙP	1	0,0
AT	3.329	0,5	LL	1	0,0
LO	3.161	0,5	MA	1	0,0
PZ	3.139	0,5	S	1	0,0
BN	3.041	0,5	WA	1	0,0
			n.d.	21.924	3.3

La distribuzione per provincia dei soggetti iscritti è piuttosto omogenea con una buona rappresentazione delle varie regioni italiane.

Il numero delle diverse codifiche di **proprietari** è pari a 157.321 (compreso le codifiche 9999999 e 9999998). Di queste codifiche 63 risultano particolarmente importanti, assommando al 10% cumulativo delle iscrizioni.

Proprietario	F	rogei	nie	Propriotorio		Prog	enie
(codifica)	n	%	% cum	Proprietario	n	%	% cum
802	6.691	1.0	1.0	16617	594	0.1	7.9
1067	6.491	1.0	2.0	831	571	0.1	8.0
0	5.687	0.9	2.8	11652	556	0.1	8.1
75923	3.421	0.5	3.3	710	546	0.1	8.2
9999998	2.973	0.4	3.8	2915	544	0.1	8.3
979	2.502	0.4	4.2	170165	540	0.1	8.3
9999999	2.471	0.4	4.5	11507	523	0.1	8.4
117529	2.384	0.4	4.9	38857	518	0.1	8.5
39608	1.378	0.2	5.1	57631	514	0.1	8.6
63825	1.087	0.2	5.3	164622	512	0.1	8.7
854	1.085	0.2	5.4	562834	494	0.1	8.7
89444	1.075	0.2	5.6	18857	476	0.1	8.8
771352	1.002	0.2	5.7	20679	476	0.1	8.9
7611	968	0.1	5.9	69737	475	0.1	8.9
14029	943	0.1	6.0	1132	463	0.1	9.0
974	921	0.1	6.2	1030	456	0.1	9.1
1092	917	0.1	6.3	78423	456	0.1	9.2
771	821	0.1	6.4	1152	451	0.1	9.2
16470	808	0.1	6.5	102420	446	0.1	9.3
927	776	0.1	6.7	110988	443	0.1	9.4
667680	7 4 3	0.1	6.8	43620	434	0.1	9.4
9714	702	0.1	6.9	29500	430	0.1	9.5
26711	694	0.1	7.0	525	417	0.1	9.5
1091479	688	0.1	7.1	1089819	410	0.1	9.6
1061901	678	0.1	7.2	522	403	0.1	9.7
1183297	660	0.1	7.3	12710	400	0.1	9.7
1091	648	0.1	7.4	15809	400	0.1	9.8
182253	634	0.1	7.5	27583	396	0.1	9.8
890	617	0.1	7.6	5540	395	0.1	9.9
523753	609	0.1	7.7	64175	394	0.1	10.0
76669	606	0.1	7.8	8059818	376	0.1	10.0
37958	595	0.1	7.8				

Studio dei riproduttori e della loro progenie

Nella seguente tabella vengono riportate le statistiche descrittive relative allo studio degli accoppiamenti che consente di caratterizzare i riproduttori, la progenie e le famiglie.

Parametro	n
Individui totali	682.269
Accoppiamenti	314.620
Individui con progenie	147.767
Individui senza progenie	534.502

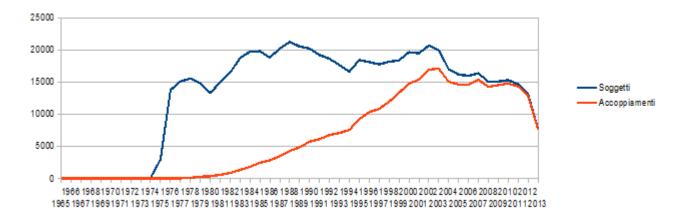
E' interessante rilevare che dei 682.269 individui presenti nel dataset 534.502 non presentano progenie registrata (78,3 %).

Di seguito viene riportata la situazione dei **riproduttori** (individui con progenie) dalla quale si evince che i maschi rappresentano il 39,4% e le femmine il 60,6% del totale.

Genere	Riproduttori n %		Progenie
Genere			generata
Stalloni	58.277	39,4	660.332
Fattrici	89.490	60,6	659.947
TOTALE	147.767	100,0	

Di seguito si riportano i risultati dello studio dei **fondatori**, ovvero dei riproduttori dei quali non si conoscono gli ascendenti, e degli individui **non-fondatori**.

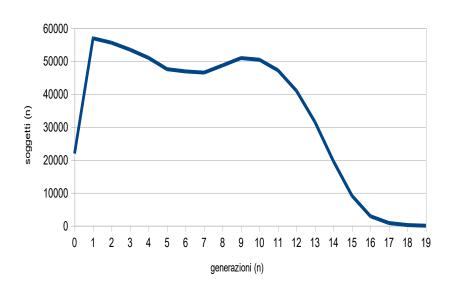
Fondato	Progenie	
Padri	9.525	91.113
Madri	12.335	77.090
Senza progenie	70	
TOTALE	21.930	111.596


NON Fondato	Progenie	
Padri	48.752	569.219
Madri	77.155	582.857
Solo Padre conosciuto	392	
Solo Madre conosciuta	7	
TOTALE	660.339	

Di seguito viene riportato l'andamento per anno delle nascite e degli accoppiamenti.

Anno	Soggetti	Accoppiamenti	Anno	Soggetti	Accoppiamenti
1965	1	0	1990	20.188	5.734
1966	6	0	1991	19.194	6.113
1967	3	0	1992	18.609	6.757
1968	3	0	1993	17.643	7.070
1969	9	0	1994	16.587	7.544
1970	4	0	1995	18.400	9.207
1971	37	0	1996	18.108	10.316
1972	44	0	1997	17.738	10.810
1973	37	0	1998	18.160	11.918
1974	127	0	1999	18.358	13.315
1975	3.000	0	2000	19.626	14.733
1976	13.740	3	2001	19.456	15.357
1977	15.103	30	2002	20.653	16.916
1978	15.535	101	2003	19.937	17.082
1979	14.804	280	2004	16.996	15.035
1980	13.314	343	2005	16.144	14.602
1981	14.930	562	2006	15.979	14.612
1982	16.444	857	2007	16.351	15.341

1983	18.729	1.336	2008	15.003	14.227
1984	19.706	1.808	2009	15.083	14.525
1985	19.782	2.455	2010	15.305	14.765
1986	18.789	2.814	2011	14.625	14.312
1987	20.197	3.454	2012	13.079	12.766
1988	21.215	4.272	2013	7.665	7.569
1989	20.513	4.844	n.d.	11.165	403


Per quanto concerne le nascite, l'andamento diventa stabile a partire dall'anno 1983, mentre per quanto concerne gli accoppiamenti, dopo un periodo di forte crescita, la situazione diventa stabile dall'anno 2000.

Tramite analisi delle nascite sono state valutate le **famiglie**, intese come insiemi di fratelli pieni (figli degli stessi genitori), delle quali si riporta di seguito la caratterizzazione.

Parametro	n
Gruppi di Fratelli Pieni	110.207
Dimensione Media delle Famiglie	5,88
Massimo	60
Minimo	2

Nella tabella seguente si presenta la valutazione della profondità dell'informazione genealogica, ossia del **numero di generazioni** tracciabili.

Generazioni	Soggetti
tracciate	(n)
0	21.930
1	56.937
2	55.590
3	53.483
4	51.004
5	47.561
6	46.875
7	46.514
8	48.687
9	50.936
10	50.423
11	47.217
12	40.991
13	31.521
14	19.580
15	9.123

Le generazioni tracciate arrivano a 19, anche se i soggetti si

16	2.877
17	814
18	199
19	7

ripartiscono omogeneamente fra 1 e 12 generazioni.

Studio della consanguineità sull'intera popolazione

Di seguito si riporta lo studio di frequenza dei coefficienti di *inbreeding*.

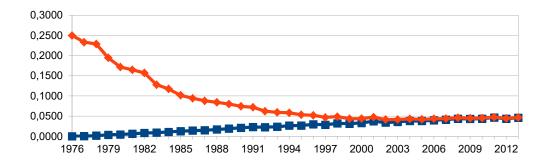
Limite Sup. Classe di inbreeding	n	%	Livello	
0,05	213.806	68.0	Accettabile	
0,10	44.035	14.0	Accettablie	
0,15	29.833	9.5		
0,20	10.763	3.4		
0,25	8.526	2.7		
0,30	5.884	1.9		
0,35	1.227	0.4	Alba	
0,40	422	0.1	Alto	
0,45	81	0.0		
0,50	31	0.0		
0,55	9	0.0]	
0,60	3	0.0		

Dall'analisi della tabella si evidenzia che il valore dei coefficienti di *inbreeding* si distribuiscono fra i valori 0,00 e 0,60.

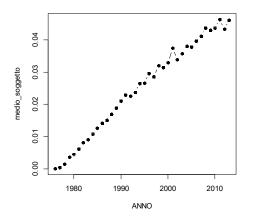
Presentano valori accettabili, entro lo 0,10, l'82% degli individui.

Di seguito si riporta la tabella con i dati suddivisi per anno dell'inbreeding calcolato sui soggetti e sugli accoppiamenti.

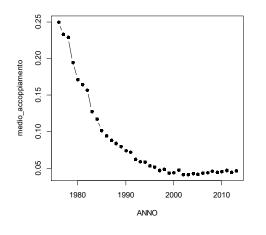
Lo studio grafico e statistico è stato eseguito sui dati dal 1976, anno nel quale compaiono i primi accoppiamenti con le registrazioni di data.


		Inbre	eding		
ANNO	medio	Medio per acc.	max	min	parentela media
1965	0,0000	0,0000	0,0000	0,0000	0,0000
1966	0,0000	0,0000	0,0000	0,0000	0,0000
1967	0,0000	0,0000	0,0000	0,0000	0,0000
1968	0,0000	0,0000	0,0000	0,0000	0,0000
1969	0,0000	0,0000	0,0000	0,0000	0,0000
1970	0,0000	0,0000	0,0000	0,0000	0,0000
1971	0,0000	0,0000	0,0000	0,0000	0,0064
1972	0,0000	0,0000	0,0000	0,0000	0,0153
1973	0,0000	0,0000	0,0000	0,0000	0,0049
1974	0,0000	0,0000	0,0000	0,0000	0,0121
1975	0,0000	0,0000	0,0000	0,0000	0,0012
1976	0,0001	0,2500	0,2500	0,2500	0,0004
1977	0,0005	0,2333	0,2500	0,1250	0,0004
1978	0,0015	0,2290	0,2500	0,1250	0,0005
1979	0,0037	0,1946	0,2500	0,0625	0,0005
1980	0,0044	0,1716	0,2500	0,0313	0,0007
1981	0,0062	0,1648	0,2500	0,0156	0,0008
1982	0,0082	0,1571	0,3750	0,0156	0,0009
1983	0,0091	0,1280	0,3750	0,0156	0,0011
1984	0,0108	0,1175	0,4375	0,0078	0,0013
1985	0,0126	0,1018	0,3750	0,0039	0,0016
1986	0,0141	0,0943	0,3750	0,0039	0,0019
1987	0,0151	0,0880	0,3750	0,0039	0,0025
1988	0,0170	0,0843	0,3750	0,0010	0,0030
1989	0,0189	0,0801	0,3750	0,0010	0,0036
1990	0,0211	0,0743	0,4375	0,0010	0,0045
1991	0,0229	0,0720	0,5000	0,0005	0,0055
1992	0,0226	0,0623	0,3750	0,0005	0,0066

Istituto Spallanzani, Rivolta d'Adda, Cremona


1993	0,0237	0,0593	0,5625	0,0005	0,0078
1994	0,0266	0,0584	0,5469	0,0001	0,0093
1995	0,0267	0,0533	0,3672	0,0002	0,0105
1996	0,0296	0,0520	0,4453	0,0002	0,0118
1997	0,0286	0,0 4 69	0,3667	0,0001	0,0130
1998	0,0320	0,0488	0,4063	0,0001	0,0142
1999	0,0315	0,0434	0,4512	0,0001	0,0164
2000	0,0330	0,0439	0,4492	0,0001	0,0172
2001	0,0374	0,0474	0,4502	0,0000	0,0181
2002	0,0339	0,0414	0,3867	0,0000	0,0197
2003	0,0357	0,0417	0,4321	0,0000	0,0207
2004	0,0381	0,0430	0,4184	0,0000	0,0221
2005	0,0379	0,0419	0,4731	0,0000	0,0225
2006	0,0397	0,0434	0,3857	0,0000	0,0239
2007	0,0412	0,0440	0,4160	0,0000	0,0249
2008	0,0437	0,0461	0,4160	0,0000	0,0265
2009	0,0431	0,0447	0,5233	0,0000	0,0279
2010	0,0437	0,0453	0,4651	0,0000	0,0295
2011	0,0464	0,0474	0,5078	0,0000	0,0323
2012	0,0434	0,0445	0,3980	0,0000	0,0322
2013	0,0461	0,0467	0,3867	0,0001	0,0329
n.d.	0,0018	<i>0,0487</i>	0,2617	0,0001	0,0002
Totale	0,0236	0,0513	0,5625	0,0000	0,0068

Andamento dell'inbreeding per anno



Da una prima analisi del grafico si evidenzia che l'inbreeding medio per consanguinei (linea rossa) dopo un primo periodo si assesta dal 1997 sui valori attuali di circa il 4 %. L'inbreeding medio per soggetto (linea blu) presenta invece un leggero trend positivo.

L'andamento dell'inbreeding medio annuale per soggetto è di tipo lineare. E' stimabile un aumento di 0,0013 per anno $(R^2=0.99;p<0,00001)$.

L'andamento dell'inbreeding medio annuale per consaguinei è di tipo logaritmico:

 $y=-0.062 \ln(x) + 0.249$; R²=0.95. Attualmente il coefficiente di inbreeding è sostanzialmente stabile.

Confronto fra soggetti morti e vivi

In tabella si presentano i risultati del confronto fra l'analisi dei pedigree per i soggetti morti e vivi.

Parametro	Morti	Vivi
Individui	440.222	225.902
Accoppiamenti	112.682	201.938
Fondatori	5.767	18
Individui con 2 genitori conosciuti	434.057	225.883
Individui senza progenie	338.396	196.106
Inbreeding medio per soggetto	0,016	0,040
Inbreeding medio per consanguinei	0,064	0,044
Inbreeding Max	0,563	0,523
<i>Inbreeding</i> Min	0,000	0,000
Coefficiente di parentela medio	0,003	0,023
Generazioni discrete* - Media	3,07	6,36
Generazioni discrete* - Max	7,94	9,78
Generazioni discrete* - Min	0	0

^{*)} generazioni che non si sovrappongono

Dall'analisi della tabella si evidenzia che i coefficienti medi d'*inbreeding* e di parentela per i soggetti "vivi" risultano superiori a quelli dell'altra sottopopolazione (dei "morti"), pur non presentando caratteristiche di gravità.

Valutazione degli stalloni con maggiore incidenza sulla popolazione

Nella seguente tabella vengono presentate le frequenze assolute e percentuali del **numero dei nati** per classe di frequenza (definita pari a 50 nati).

Classe	Accoppia	menti
(limite sup.)	n	%
50	56.779	97,4
100	982	1,7
150	234	0,4
200	110	0,4 0,2
250	73	0,1
300	31 21	0,1 0,0
350	21	0,0
400	11	0,0
450	6	0,0 0,0
500	2 2	0,0
550	2	0,0
600	2	0,0
650	6	0,0
700	3	0,0
750	3 2 2	0,0
800		0,0
850	4	0,0
900	2	0,0
950	0	0,0 0,0
1000	1	0,0
1050	1	0,0
1100	1	0,0
1150	0	0,0
1200	1	0,0
1250	1	0,0
1300	2	0,0

Di seguito si riportano le matricole degli stalloni (n=71) che hanno generato almeno 300 individui (**TopSire**).

Stallone	Progenie	Stallone	Progenie
LO0439835	1295	ST413821	423
ST457334	1294	ST294019	415
ST143178	1242	ST061329	375
ST479317	1190	ST315271	373
ST382982	1089	ST071800	369
LO98133353	1025	ST239141	368
ST496239	962	ST404088	364
ST541319	878	ST474346	363
ST102064	868	ST101636	360
LO0188207	848	ST329500	357
ST099945	823	ST503984	357
ST059002	815	ST022259	354
ST258470	809	LO9851974	351
ST514177	782	ST519907	350
ST123385	766	ST531735	348
ST448908	724	ST032938	343
ST506181	720	ST046247	340
ST332119	690	ST439587	336
ST200235	678	ST218636	335
ST422637	660	ST317648	329
ST374735	648	ST083766	327
ST350880	641	ST240608	324
ST552183	628	ST315563	323
ST222808	625	ST499716	321
ST325293	603	ST076907	317
ST404483	602	ST210410	313
LO9817889	600	ST409893	313
ST224730	563	LO01115312	311
ST412406	536	ST227450	304

Pagina 14 di 45

Istituto Spallanzani, Rivolta d'Adda, Cremona

ST067273	510	ST429149	304
ST239144	477	ST083451	303
ST234361	456	LO0014433	302
ST268976	449	LO02167262	302
ST484387	439	LO0669697	301
ST114990	431	ST479263	300
ST140477	424		

E' stata quindi studiata la sottopopolazione relativa alla progenie generata dai TopSire, ottenendo i seguenti risultati.

Parametro	TopSire
Individui	42073
Accoppiamenti	2717
Fondatori	3411
Individui con 2 parenti conosciuti	38662
Inbreeding medio per soggetto	0.008
Inbreeding medio per consanguinei	0.128
<i>Inbreeding</i> massimo	0.375
<i>Inbreeding</i> minimo	0.004
Coefficiente di parentela medio	0.009
Generazioni discrete* - Media	1.358
Generazioni discrete* - Max	3.719
Generazioni discrete*- Min	0

*) generazioni che non si sovrappongono

Dall'analisi della tabella si evince che il coefficiente d'*inbreeding* medio per consanguinei è degno di nota essendo pari al 12,8%, rientrando nella fascia di attenzione!

Setter gordon (006)

Dataset

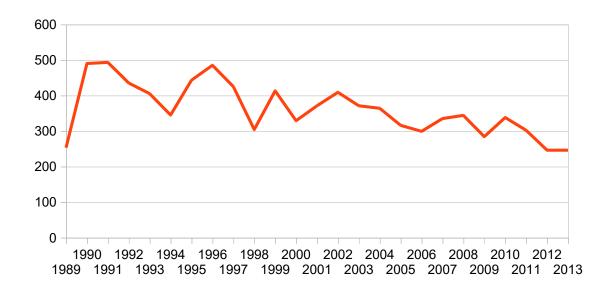
La codifica utilizzata per il campo LL_CANE presentava diverse sottostringhe iniziali di due caratteri, con preponderanza di "ST" e di "LO", come da seguente tabella.

Sottostringa iniziale della matricola	n	%
ES	868	4,9
LI	5	0,0
LO	5.459	30,9
ST	10.025	56,8
ZZ	1.285	7,3
TOTALE	17.642	100,0

La data di nascita non era determinata per 2132 individui, pari al 12,1 % del totale.

Al fine di valutare la completezza del dataset è stata valutata la situazione della registrazione degli ascendenti (LL_PADRE, LL_MADRE) per individuo, evidenziando che circa il 91% dei record risultava completo.

	Ascendenti conosciuti per soggetto		n	%
	PADRE	MADRE		
Fondatori assoluti			1088	6,2
			40	0,2
assoluti			0	0,0
			16.514	93,6
	TOTALE		17.642	100,0


Dall'analisi della tabella risultano 1128 (6,4%) fondatori (individui dei quali non sono registrati padre e/o madre).

Nella seguente tabella sono riportate le **iscrizioni** per anno.

ANNO	Iscriz	ioni	
ANNO	n	%	
n.d.	8.595	48,7	
1988	2	0,0	
1989	253	1,4	
1990	490	2,8	
1991	493	2,8	
1992	435	2,5	
1993	405	2,3	
1994	345	2,0	
1995	443	2,5	
1996	485	2,7	
1997	425	2,4	
1998	304	1,7	

2004 2005 2006	364 316 299	2,1 1,8 1,7
2007	335 344	1,9 1,9
2009	284	1,6 1,9
2011	302 246	1,7 1,4
2012 2013 TOTALE	246 17.642	1,4 100,0

Quasi il 49% dei soggetti risultano mancanti del dato relativo alla data d'iscrizione. L'andamento è stato pertanto studiato dall'anno 1898, dopo il quale le iscrizioni risultano piuttosto stabili nel tempo.

Sono state verificate le registrazioni complete (2 genitori noti) per **anno di nascita** dei soggetti ed i dati sono riportati nella seguente tabella.

ANNO	Soggetti con 2 genitori noti	Individui senza progenie	ANNO	Soggetti con 2 genitori noti	Individui senza progenie
n.d.	1034	46	1992	439	364
1970	2	1	1993	374	328
1972	1	1	1994	400	343
1973	3	1	1995	469	389
1974	8	3	1996	412	343
1975	68	56	1997	364	305
1976	527	440	1998	326	271
1977	403	329	1999	422	328

Istituto Spallanzani, Rivolta d'Adda, Cremona

1978	447	359	2000	299	259
1979	380	310	2001	388	320
1980	354	297	2002	390	321
1981	409	319	2003	396	346
1982	429	344	2004	368	311
1983	429	333	2005	318	273
1984	588	478	2006	315	265
1985	422	336	2007	338	294
1986	522	435	2008	330	292
1987	516	432	2009	285	268
1988	678	561	2010	318	298
1989	549	463	2011	305	297
1990	614	523	2012	284	282
1991	436	354	2013	154	154

Di seguito si riporta la tabella con la ripartizione dei soggetti **registrati per provincia.**

provincia	n	%	provincia	n	%
n.d.	1960	11.1	RO	54	0.3
PT	1664	9.4	AT	53	0.3
MI	1411	8.0	AV	53	0.3
SI	1195	6.8	BA	53	0.3
RA	628	3.6	AR	52	0.3
VI	489	2.8	FG	52	0.3
CN	459	2.6	СВ	44	0.2
FC	413	2.3	MC	39	0.2
PV	413	2.3	MS	38	0.2
AL	410	2.3	BI	34	0.2
FI	390	2.2	CA	33	0.2
BS	331	1.9	SA	33	0.2
MO	321	1.8	TP	32	0.2
MB	310	1.8	AP	31	0.2
FE	308	1.7	RI	29	0.2
RM	308	1.7	RC	27	0.2
UD	299	1.7	TE	24	0.1
PC	298	1.7	BN	22	0.1
VR	284	1.6	OR	21	0.1
PG	275	1.6	AQ	20	0.1
PI	270	1.5	СТ	20	0.1
VA	243	1.4	SP	20	0.1
ВО	236	1.3	VT	19	0.1
TO	232	1.3	BZ	16	0.1
GE	188	1.1	ME	16	0.1
PD	186	1.1	GO	15	0.1
GR	173	1.0	SS	15	0.1
NO	171	1.0	LE	14	0.1
NA	155	0.9	PO	14	0.1
LI	147	0.8	CH	13	0.1
TR	145	0.8	VS	11	0.1
TV	138	0.8	AG	10	0.1
VC	134	0.8	PZ	9	0.1
VE	126	0.7	SO	9	0.1
PA	124	0.7	TA	9	0.1
MN	120	0.7	TS	9	0.1
LU	117	0.7	PE	8	0.0
FM	114	0.6	BL	7	0.0
CR	103	0.6	CI	7	0.0
SV	100	0.6	MT	5	0.0
IM	95	0.5	BR	4	0.0
BG	94	0.5	NU	4	0.0
CS	93	0.5	AO	3	0.0
PR	93	0.5	BT	3	0.0

CO	89	0.5	FR	3	0.0
LO	89	0.5	CZ	2	0.0
LT	83	0.5	EN	2	0.0
CE	79	0.4	RG	2	0.0
LC	79	0.4	CL	1	0.0
RE	73	0.4	HR	1	0.0
TN	71	0.4	IS	1	0.0
PU	64	0.4	KR	1	0.0
RN	62	0.4	OG	1	0.0
PN	59	0.3	SR	1	0.0
AN	55	0.3	UK	1	0.0
VB	55	0.3	VV	1	0.0

La distribuzione per provincia dei soggetti iscritti è piuttosto omogenea con una buona rappresentazione delle varie regioni italiane.

Il numero delle diverse codifiche di **proprietari** è pari a 4.204 (compreso le codifiche 999999 e 999998). La maggioranza delle codifiche riguardano proprietari di singoli animali, infatti solo 225 diverse codifiche di proprietari assommano a 8321 iscrizioni, che rappresentano il 47,2 % del totale.

Studio dei riproduttori e della loro progenie

Nella seguente tabella vengono riportate le statistiche descrittive relative allo studio degli accoppiamenti che consente di caratterizzare i riproduttori, la progenie e le famiglie.

Parametro	n
Individui totali	18.095
Accoppiamenti	7.677
Individui con progenie	5.023
Individui senza progenie	13.072

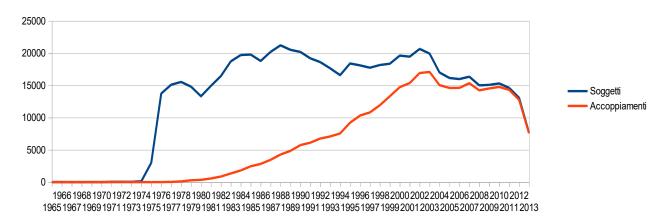
E' interessante rilevare che dei 18.095 individui presenti nel dataset 13072 non presentano progenie registrata (72,2 %) e pertanto sono ininfluenti a livello di genetica di popolazioni.

Di seguito viene riportata la situazione dei **riproduttori** (individui con progenie) dalla quale si evince che i maschi rappresentano il 39,4% e le femmine il 60,6% del totale.

Comoro	Riprodu	ıttori	Drogonio gonorata
Genere	n	%	Progenie generata
Stalloni	2.234	44,5	16.553
Fattrici	2.789	55,5	16.513
TOTALE	5.023	100,0	

Di seguito si riportano i risultati dello studio dei **fondatori**, ovvero dei soggetti dei quali non si conoscono gli ascendenti, e degli individui non-fondatori.

Tipo	Fondatori	Progenie
Padri	712	2.796
Madri	800	2.604
Senza progenie	30	
TOTALE	1.542	3.454

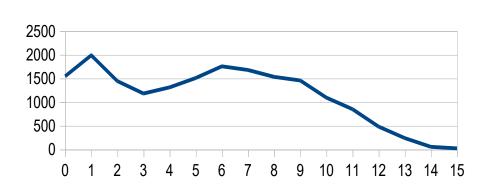

Tipo	NON	Progenie
_	Fondatori	
Padri	1522	13757
Madri	1989	13909
Solo Padre conosciuto	40	
Solo Madre conosciuta	0	
TOTALE	660.339	

Di seguito viene riportato l'andamento per anno delle **nascite** e degli **accoppiamenti**.

Anno	Soggetti	Accoppiamenti	Anno	Soggetti	Accoppiamenti
n.d.	11.165	403	1989	20.513	4.844
1965	1	0	1990	20.188	5.734
1966	6	0	1991	19.194	6.113
1967	3	0	1992	18.609	6.757
1968	3	0	1993	17.643	7.070
1969	9	0	1994	16.587	7.544
1970	4	0	1995	18.400	9.207
1971	37	0	1996	18.108	10.316
1972	44	0	1997	17.738	10.810
1973	37	0	1998	18.160	11.918
1974	127	0	1999	18.358	13.315
1975	3.000	0	2000	19.626	14.733
1976	13.740	3	2001	19.456	15.357
1977	15.103	30	2002	20.653	16.916
1978	15.535	101	2003	19.937	17.082
1979	14.804	280	2004	16.996	15.035
1980	13.314	343	2005	16.144	14.602
1981	14.930	562	2006	15.979	14.612
1982	16.444	857	2007	16.351	15.341
1983	18.729	1.336	2008	15.003	14.227
1984	19.706	1.808	2009	15.083	14.525
1985	19.782	2.455	2010	15.305	14.765
1986	18.789	2.814	2011	14.625	14.312
1987	20.197	3.454	2012	13.079	12.766
1988	21.215	4.272	2013	7.665	7.569

Soggetti ed accoppiamenti per anno

Per quanto concerne le nascite, l'andamento diventa stabile a partire dall'anno 1983, mentre per quanto concerne gli accoppiamenti, dopo un periodo di forte crescita, la situazione diventa stabile dall'anno 2000.


Tramite analisi delle nascite sono state caratterizzate le **famiglie**, intese come insiemi di fratelli pieni (figli degli stessi genitori), delle quali si riporta di seguito la caratterizzazione.

Parametro	n
Gruppi di Fratelli Pieni	2266
Dimensione Media delle Famiglie	6,74
Massimo	43
Minimo	2

Nella tabella seguente si presenta la valutazione della profondità dell'informazione genealogica, ossia del **numero di generazioni** di antenati.

Generazioni	Sogg	etti
tracciate	(n)	%
0	1542	8.5
1	1986	11.0
2	1440	8.0
3	1178	6.5
4	1308	7.2
5	1506	8.3
6	1752	9.7
7	1674	9.3
8	1530	8.5
9	1454	8.0
10	1091	6.0
11	847	4.7
12	479	2.6
13	237	1.3
14	52	0.3
15	19	0.1

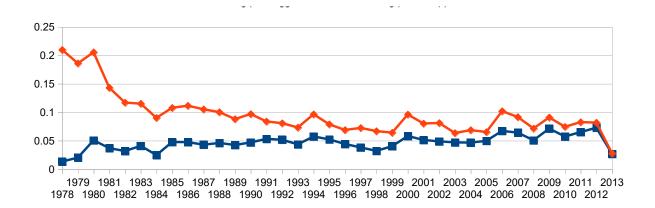
Studio della consanguineità sull'intera popolazione

Di seguito si riporta lo studio di frequenza dei coefficienti di *inbreeding*.

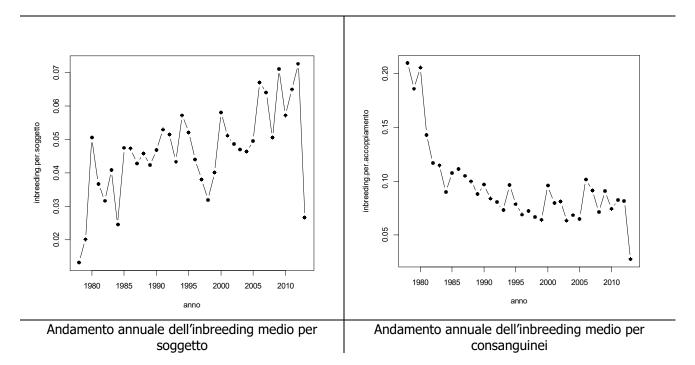
Limite Sup. Classe di inbreeding	n	%	Livello
0,05	43.7		Accettabile
0,10	20.2		Accettablie
0,15	16.5		
0,20	9.3		
0,25	5.7		
0,30	3.2		
0,35	1.0		Alto
0,40	0.4		Aito
0,45	0.0		
0,50	0.1		
0,55	0		
0,60	0		

Dall'analisi della tabella si evidenzia che il valore dei coefficienti di *inbreeding* si distribuiscono fra i valori 0,00 e 0,50.

Presentano valori accettabili, entro lo 0,10, il 63,9 % degli individui.


Di seguito si riporta la tabella con i dati suddivisi per anno dell'inbreeding calcolato sui soggetti e sui consanguinei.

Lo studio grafico e statistico è stato eseguito sui dati dal 1978, anno nel quale le registrazioni risultano presenti.



				Danantala			
ANNO	Soggetti	Accop.	medio	medio	max	min	Parentela media
		-		per acc.			media
n.d.	2132	46	0.0017	0.0768	0.2500	0.0011	5.6133
1970	2	0	0.0000	0.0000	0.0000	0.0000	0.0000
1972	1	0	0.0000	0.0000	0.0000	0.0000	0.0000
1973	3	0	0.0000	0.0000	0.0000	0.0000	0.0000
1974	8	0	0.0000	0.0000	0.0000	0.0000	0.0179
1975	75	0	0.0000	0.0000	0.0000	0.0000	0.0286
1976	527	0	0.0000	0.0000	0.0000	0.0000	0.0072
1977	408	2	0.0006	0.1250	0.1250	0.1250	0.0097
1978	447	28	0.0131	0.2098	0.2500	0.1250	0.0173
1979	380	41	0.0201	0.1860	0.2500	0.1250	0.0150
1980	354	87	0.0505	0.2055	0.2500	0.1250	0.0293
1981	409	105	0.0367	0.1430	0.2500	0.0625	0.0193
1982	429	116	0.0316	0.1169	0.2813	0.0313	0.0265
1983	429	152	0.0408	0.1150	0.3750	0.0313	0.0296
1984	588	160	0.0245	0.0900	0.3750	0.0156	0.0275
1985	422	186	0.0475	0.1077	0.3750	0.0156	0.0319
1986	523	222	0.0473	0.1114	0.3125	0.0156	0.0415
1987	516	210	0.0428	0.1051	0.3750	0.0078	0.0349
1988	678	310	0.0458	0.1001	0.3125	0.0078	0.0411
1989	549	264	0.0423	0.0879	0.3438	0.0039	0.0420
1990	614	297	0.0468	0.0968	0.3750	0.0020	0.0388
1991	436	276	0.0530	0.0837	0.3047	0.0068	0.0426
1992	439	281	0.0516	0.0806	0.5000	0.0005	0.0485
1993	374	222	0.0434	0.0731	0.3047	0.0002	0.0452
1994	400	238	0.0573	0.0963	0.3125	0.0002	0.0401
1995	470	311	0.0521	0.0787	0.2539	0.0002	0.0357
1996	412	264	0.0440	0.0687	0.2649	0.0005	0.0450
1997	364	191	0.0380	0.0723	0.2510	0.0052	0.0335
1998	326	156	0.0319	0.0667	0.2520	0.0017	0.0513
1999	422	264	0.0401	0.0640	0.2695	0.0005	0.0372
2000	299	181	0.0581	0.0960	0.2969	0.0017	0.0341
2001	389	248	0.0511	0.0801	0.2813	0.0012	0.0344
2002	390	234	0.0486	0.0810	0.2539	0.0006	0.0379
2003	396	293	0.0469	0.0633	0.3455	0.0001	0.0370
2004	369	250	0.0464	0.0685	0.2759	0.0006	0.0336
2005	320	244	0.0496	0.0651	0.2827	0.0003	0.0337
2006	317	209	0.0671	0.1018	0.3491	0.0001	0.0457
2007	340	238	0.0640	0.0915	0.2969	0.0006	0.0398
2008	335	237	0.0505	0.0714	0.3369	0.0001	0.0411
2009	287	225	0.0712	0.0908	0.3894	0.0001	0.0484
2010	318	245	0.0572	0.0743	0.3342	0.0009	0.0416
2011	306	241	0.0650	0.0825	0.2882	0.0002	0.0456
2012	284	253	0.0727	0.0816	0.3809	0.0000	0.0524
2013	154	150	0.0266	0.0274	0.1517	0.0000	0.0488
Total	18095	7677	0.0368	0.0866	0.5000	0.0000	0.0147

Istituto Spallanzani, Rivolta d'Adda, Cremona

Inbreeding medio per soggetto (linea blu) e per consanguinei (linea rossa)

Da una prima analisi del grafico si evidenzia che l'inbreeding medio per consanguinei (linea rossa) si assesta su valori prossimi allo 0,08 con varie punte annuali pari allo 0,01, pertanto degne di massima attenzione. L'inbreeding medio per soggetto (linea blu) si assesta su valori più bassi, pur sempre nell'ordine dello 0,05.

In particolare per l'inbreeding per soggetto medio annuale si stima un aumento di 0,001 per anno (R^2 =0.53; F=37 con 1 e 33 GL; p< 0,00001), mentre per l'inbreeding medio per consanguinei la diminuzione stimata per anno è pari a -0.002 R^2 = 0.47, F=29.21 con 1 and 33 GL; p< 0.0000001).

Confronto fra soggetti morti e vivi

In tabella si presentano i risultati del confronto fra l'analisi dei pedigree per i soggetti morti e vivi.

	Morti	Vivi
Individui	13137	4504
Accoppiamenti	4429	3248
Fondatori	1072	16
Individui con 2 genitori conosciuti	12025	4488
Individui senza progenie	9092	3980
<i>Inbreeding</i> medio per soggetto	0,032	0,056
Inbreeding medio per consanguinei	0,094	0,077

Inbreeding Max	0,500	0,389
<i>Inbreeding</i> Min	0,000	0,000
Coefficiente di parentela medio	0,015	0,031
Generazioni discrete* - Media	2,97	5,91
Generazioni discrete* - Max	7,03	8,90
Generazioni discrete* - Min	0	0

*) generazioni che non si accavallano

Dall'analisi della tabella si evidenzia che i coefficienti medi d'*inbreeding* (per soggetto) e di parentela per i soggetti "vivi" risultano superiori a quelli della sottopopolazione dei "morti". Il valore di 0,077 per l'inbreeding medio per consanguinei, pur essendo inferiore a quello della sottopopolazione dei "morti" richiede comunque attenzione essendo prossimo alla soglia del 10%.

Valutazione degli stalloni con maggiore incidenza sulla popolazione

Nella seguente tabella vengono presentate le frequenze assolute e percentuali degli stalloni per numero di nati, per classe di frequenza (definita pari a 50 nati).

Classe (limite sup.)	n	%
50	2.196	98,3
100	25	1,1
150	9	0,4
200	4	0,2

Dall'analisi della tabella risulta che la quasi totalità degli stalloni (98,3%) hanno generato meno di 50 soggetti.

Di seguito si riportano le matricole degli stalloni che hanno generato almeno 100 individui (**TopSire**).

Stallone	Progenie
ST113810	175
ST215999	167
ST214100	158
ST511713	158
ST521719	144
LO01115371	142
ST331029	140
LO0482859	138
ST053848	136
ST109757	129
ST257510	109
ST423453	107
ST308165	106

E' stata quindi studiata la sottopopolazione relativa alla progenie generata dai TopSire, ottenendo i seguenti risultati.

Parametro	TopSire
Individui	1974
Accoppiamenti	65
Fondatori	166

Istituto Spallanzani, Rivolta d'Adda, Cremona

Individui con 2 parenti conosciuti	1808
<i>Inbreeding</i> medio	0.008
Inbreeding medio per consanguinei	0.250
<i>Inbreeding</i> massimo	0.250
<i>Inbreeding</i> minimo	0.250
Coefficiente di parentela medio	0.025
Generazioni discrete* - Media	1.05
Generazioni discrete* - Max	2.25
Generazioni discrete*- Min	0

*) generazioni che non si accavallano

Dall'analisi della tabella si evince che il coefficiente d'*inbreeding* medio per accoppiamento è molto alto(0,25), chiara tendenza ad un accoppiamento fra consanguinei nell'ambito della progenie ottenuta dall'utilizzo degli stalloni maggiormente richiesti.

Setter Irlandese (120)

Dataset

La codifica utilizzata per il campo LL_CANE presentava diverse sottostringhe iniziali di due caratteri, con preponderanza di "ST", come da seguente tabella.

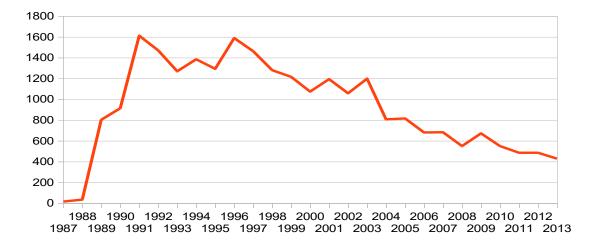
Tipo matricola	n	%
ES	1.261	2,8
LI	379	0,8
LO	13.654	30,5
ST	25.679	57,3
ZZ	3.820	8,5
TOTALE	44.793	100,0

Il campo DATA_NASCITA, non era determinato per 5092 individui, pari al 11,4 % del totale.

I soggetti maschi erano 23.082 (51,5 %) e quelli femmina 21.711 (48,5 %).

Al fine di valutare la completezza del dataset è stata valutata la situazione della registrazione degli ascendenti (LL_PADRE, LL_MADRE) per individuo, evidenziando che il 93,6% dei record risultava completo.

Ascendenti conosciuti per soggetto		n	%
PADRE	MADRE		
		2.720	6.1
		140	0.3
		1	0.0
		41.932	93.6


Dall'analisi della tabella risultano 2861 (6,4 %) **fondatori** (individui dei quali non sono registrati padre e/o madre).

Nella seguente tabella sono riportate le **iscrizioni** per anno.

anno	Iscrizioni	
	n	%
1986	1	0,0
1987	15	0,0
1988	34	0,1
1989	802	1,8
1990	913	2,0
1991	1611	3,6
1992	1469	3,3
1993	1269	2,8
1994	1384	3,1
1995	1292	2,9
1996	1588	3,5
1997	1462	3,3
1998	1279	2,9
1999	1215	2,7
2000	1073	2,4

2001	1193	2,7
2002	1057	2,4
2003	1198	2,7
2004	806	1,8
2005	815	1,8
2006	680	1,5
2007	682	1,5
2008	549	1,2
2009	671	1,5
2010	5 4 9	1,2
2011	485	1,1
2012	4 85	1,1
2013	428	1,0
n.d.	19.788	44,2
TOTALE	44.793	100,0

Le registrazioni risultano essenzialmente stabili a partire dal 1991.

Sono state verificate le **registrazioni complete** (2 genitori noti) per anno di nascita dei soggetti ed i dati sono riportati nella seguente tabella, dall'analisi della quale si evidenzi che le registrazioni risultano stabili a partire dal 1976.

ANNO	Soggetti con	Individui
	2 genitori noti	senza progenie
1963	1	0
1966	1	0
1967	2	0
1969	2	1
1970	1	0
1971	5	1
1972	11	4
1973	13	6
1974	36	27
1975	322	274
1976	973	795
1977	950	790
1978	1051	891
1979	1050	869
1980	909	733
1981	920	740
1982	1106	922
1983	1050	881
1984	1071	872
1985	1063	853
1986	1244	1026

Pagina 27 di 45

1987	1093	878
1988	1317	1073
1989	1466	1233
1990	1342	1071
1991	1415	1161
1992	1470	1228
1993	1331	1125
1994	1432	1222
1995	1403	1175
1996	1299	1108
1997	1354	1145
1998	1215	1045
1999	1161	987
2000	1113	971
2001	1188	1034
2002	1061	945
2003	1147	1015
2004	835	740
2005	774	683
2006	662	589
2007	702	618
2008	608	543
2009	584	545
2010	558	521
2011	466	450
2012	494	494
2013	322	322
n.d.	2.333	130
TOTALE	41.926	33.736

Di seguito si riporta la tabella con la ripartizione dei soggetti **iscritti per provincia**.

Provincia	n	%	Provincia	n	%
AG	17	0,0	MN	2001	4,5
AL	876	2,0	МО	1280	2,9
AN	509	1,1	MS	115	0,3
AO	42	0,1	MT	89	0,2
AP	16 4	0,4	NA	833	0,2 1,9
AQ	111	0,2	NO	399	0,9
AR	202	0,5	NU	9	0,0
AT	187	0,4	OR	24	0,1
AV	54	0,1	ОТ	28	0,1
BA	148	0,3	P0	1	0,0
BG	576	1,3	PA	152	0,3
BI	173	0,4	PC	149	0,3
BL	97	0,2	PD	640	1,4
BN	53	0,1	PE	107	0,2
ВО	905	2,0	PG	900	2,0 1,5
BR	55	0,1	PI	679	1,5
BS	1243	2,8	PN	268	0,6
BT	14	0,0	PO	192	0,4
BU	1	0,0	PR	397	0,9
BZ	76	0,2	PT	294	0,7
CA	98	0,2 0,2	PU	238	0,5
СВ	59	0,1	PV	416	0,9
CE	134	0,3	PZ	59	0,1 2,1
CH	81	0,2	RA	922	2,1
CI	9	0,0	RC	59	0,1
CL	4	0,0	RE	326	0,7
CN	245	0,5	RG	28	0,1
СО	543	1,2	RI	70	0,2
CR	488	1,1	RM	2339	5,2

CS	419	0,9	RN	199	0,4
CT	66	0,1	RO	121	0,3
CZ	157	0,4	SA	229	0,5
E	1	0,0	SI	632	1,4
EN	2	0,0	SO	70	0,2
ES	9	0,0	SP	55	0,2 0,1
FC	383	0,9	SR	46	0,1
FE	477	1,1 0,3	SS	113	0,3 0,2
FG	119	0,3	SV	106	0,2
FI	2280	5,1	TA	162	0,4
FM	459	1,0	TE	88	0,2
FR	108	0,2	TI	1	0,0
GE	368	0,8	TN	208	0,5
GO	41	0,1	ТО	1177	2,6
GR	227	0,5	TP	35	0,1
IM	75	0,2	TR	488	1,1
IS	5	0,0	TS	89	0,2
KR	7	0,0	TV	420	0,9
LC	280	0.6	UD	733	0,9 1,6 1,7 0,9 0,2
LE	102	0,2	VA	763	1,7
LI	362	0,2	VB	416	0,9
LO	141	0,3	VC	103	0,2
LT	171	0,4	VE	7 4 6	1,7
LU	489	1,1	VI	1083	2,4
MB	250	0,6	VR	1050	1,7 2,4 2,3
MC	256	0,6	VS	9	0,0
ME	155	0,3	VT	285	0,6
MI	3947	8,8	VV	16	0,0
			n.d.	3816	8,5

Dall'analisi della tabella si evidenzia che la distribuzione fra le provincie rappresentate è piuttosto omogenea. Non risulta codificata la provincie in 3816 record.

Il numero delle diverse codifiche di **proprietari** è pari a 13.634 (comprese le codifiche 9999998 e 9999999).

I proprietari non determinati incidono per il 11,4 % delle iscrizioni, mentre di quelli determinati 180 allevatori incidono per il 30% delle iscrizioni.

Analisi delle genealogie

Studio dei riproduttori e della loro progenie

Nella seguente tabella vengono riportate le statistiche descrittive relative allo studio degli accoppiamenti che consente di caratterizzare i riproduttori, la progenie e le famiglie.

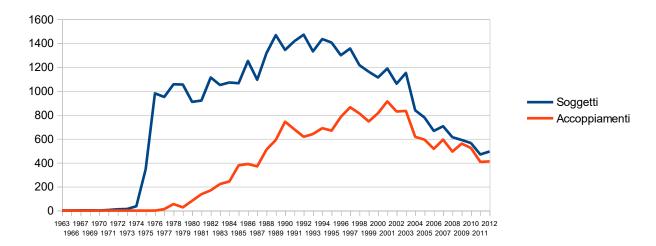
Parametro	n
Individui totali	45.687
Accoppiamenti	18.881
Individui con progenie	11.951
Individui senza progenie	33.736

E' interessante rilevare che dei 45.687 individui presenti nel data set 33.736 non presentano progenie registrata (73,8%).

Di seguito viene riportata la situazione dei riproduttori (individui con progenie) dalla quale si evince che i maschi rappresentano il 44,3% e le femmine il 55,7% del totale.

Comoro	Riprodu	Progenie	
Genere	n	%	generata
Stalloni	5.297	44,3	42.066
Fattrici	6.654	55,7	41.928
TOTALE	11.951	100,0	

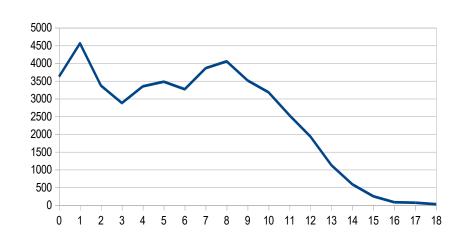
Di seguito si riportano i risultati dello studio dei riproduttori **fondatori** e **non-fondatori**.


Fondator	Progenie	
Padri	1705	6233
Madri	1808	5861
Senza progenie	106	
TOTALE	3619	7659

NON Fondator	Progenie	
Padri	3592	35833
Madri	4846	36067
Solo Padre conosciuto	140	
Solo Madre conosciuta	2	
TOTALE	42068	

Di seguito (tabella e grafico) viene riportato l'**andamento** per anno di **soggetti nati** e degli **accoppiamenti**.

ANNO	Soggetti	Accoppiamenti	ANNO	Soggetti	Accoppiamenti
1963	1	0	1991	1.416	679
1966	1	0	1992	1.471	617
1967	2	0	1993	1.331	640
1969	2	0	1994	1.434	689
1970	1	0	1995	1.405	668
1971	5	0	1996	1.299	783
1972	11	0	1997	1.355	864
1973	13	0	1998	1.216	812
1974	36	0	1999	1.161	745
1975	344	0	2000	1.113	814
1976	980	0	2001	1.188	913
1977	950	12	2002	1.061	828
1978	1.056	55	2003	1.151	833
1979	1.054	27	2004	838	616
1980	909	82	2005	778	593
1981	920	137	2006	666	516
1982	1.113	169	2007	705	593
1983	1.050	222	2008	613	493
1984	1.071	243	2009	590	560
1985	1.065	378	2010	564	523
1986	1.251	389	2011	469	407
1987	1.094	370	2012	494	411
1988	1.317	510	2013	322	279
1989	1.467	590	n.d.	5.092	78
1990	1.343	743	TOTALE	45.687	18.881



Tramite analisi delle nascite sono state valutate le **famiglie**, delle quali si riporta di seguito la caratterizzazione.

Parametro	n
Gruppi di Fratelli Pieni	5.244
Dimensione Media delle Famiglie	7,47
Massimo	60
Minimo	2

Nella tabella seguente si presenta la valutazione della profondità dell'informazione genealogica, ossia del numero di generazioni di antenati.

Generazioni	soggetti
tracciate	(n)
0	3619
1	4559
2	3367
3	2876
4	3347
5	3476
6	3265
7	3859
8	4052
9	3511
10	3179
11	2528
12	1929
13	1122
14	583
15	246
16	79
17	66
18	24

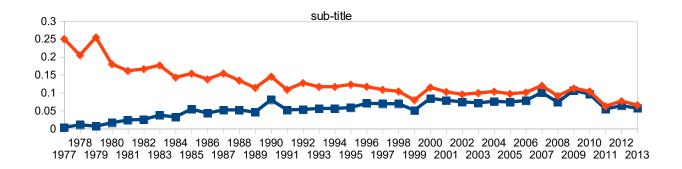
Sono tracciate fino a 18 generazioni. E' presente una ripartizione omogenea degli individui fra 0 e 10 generazioni.

Studio della consanguineità sull'intera popolazione

Di seguito si riporta lo studio di frequenza dei coefficienti di inbreeding.

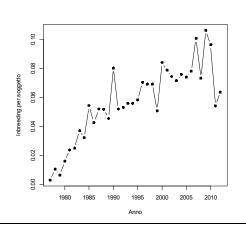
Limite Sup. Classe di inbreeding	n	%	Livello
0,05	7226	38.3	Accettabile

Dall'analisi della tabella si evidenzia che il valore dei coefficienti di *inbreeding* si distribuiscono fra i valori 0,00 e 0,60.

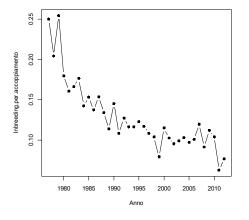

0,10	3201	17.0	
0,15	2935	15.5	
0,20	1707	9.0	
0,25	1828	9.7	
0,30	793	4.2	
0,35	395	2.1	Alto
0,40	447	2.4	Alto
0,45	126	0.7	
0,50	132	0.7	
0,55	57	0.3	
0,60	34	0.2	

Sono compresi fra valori di F pari allo 0,00 e lo 0,10 il 55,3% degli individui, mentre il 44,7 % dei soggetti presentano livelli di *inbreeding* alti.

	Inbreeding				
ANNO	medio	medio	max	min	Parentela
7	meano	per acc.	mux		media
1963	0.000	0.000	0.000	0.000	0.000
1966	0.000	0.000	0.000	0.000	0.000
1967	0.000	0.000	0.000	0.000	0.000
1969	0.000	0.000	0.000	0.000	0.000
1970	0.000	0.000	0.000	0.000	0.000
1971	0.000	0.000	0.000	0.000	0.000
1972	0.000	0.000	0.000	0.000	0.000
1973	0.000	0.000	0.000	0.000	0.000
1974	0.000	0.000	0.000	0.000	0.096
1975	0.000	0.000	0.000	0.000	0.009
1976	0.000	0.000	0.000	0.000	0.004
1977	0.003	0,250	0.250	0.250	0.005
1978	0.011	0.205	0.250	0.125	0.005
1979	0.007	0.255	0.375	0.125	0.005
1980	0.016	0.180	0.250	0.063	0.008
1981	0.024	0.161	0.250	0.063	0.010
1982	0.025	0.166	0.250	0.031	0.010
1983	0.037	0.176	0.375	0.031	0.009
1984	0.032	0.143	0.375	0.031	0.012
1985	0.054	0.153	0.438	0.016	0.013
1986	0.043	0.137	0.375	0.016	0.014
1987	0.052	0.154	0.438	0.031	0.016
1988	0.052	0.134	0.500	0.008	0.015
1989	0.046	0.114	0.438	0.008	0.017
1990	0.080	0.145	0.500	0.004	0.020
1991	0.052	0.108	0.375	0.003	0.018
1992	0.053	0.127	0.500	0.004	0.019
1993	0.056	0.116	0.500	0.001	0.022
1994	0.056	0.117	0.500	0.001	0.022
1995	0.058	0.123	0.594	0.000	0.025
1996	0.070	0.117	0.594	0.000	0.022
1997	0.069	0.109	0.547	0.000	0.024
1998	0.069	0.104 0.079	0.594	0.000	0.028
1999	0.051 0.084	0.079	0.59 4 0.59 4	0.000	0.023 0.032
2000 2001	0.079	0.113	0.394	0.000	0.032
2002 2003	0.074 0.072	0.095 0.099	0.492 0.512	0.000	0.029 0.030
2003	0.072	0.103	0.312	0.000	0.035
2005	0.074	0.103	0.375	0.000	0.033
2005	0.074	0.101	0.373	0.000	0.033
2007	0.101	0.101	0.512	0.000	0.032
2007	0.073	0.091	0.379	0.000	0.033
2009	0.106	0.112	0.422	0.000	0.053
2010	0.096	0.112	0.422	0.000	0.035
2011	0.054	0.063	0.425	0.000	0.033
2012	0.064	0.077	0.407	0.000	0.033
2012	U.UUT	5.077	0.107	0.000	0.055


2013	0.057	0.066	0.317	0.000	0.039
n.d.	0.001	0.052	0.133	0.004	0.000
TOTALE	0.046	0.112	0.594	0.000	0.009

La valutazione grafica e statistica dell'inbreeding (per soggetto e per accoppiamento) è stata sviluppata dall'anno 1977, anno dal quale si dispongono dei dati.



Inbreeding per soggetto (linea blu) e per consanguinei (linea rossa)

Da una prima analisi del grafico si evidenzia che l'inbreeding medio per consanguinei si assesta su valori alti, prossimi allo 0,10, pertanto degne di massima attenzione. L'inbreeding medio per soggetto si assesta su valori più bassi, pur sempre nell'ordine dello 0,07.

Considerando lineare il trend dell'inbreeding medio annuale per soggetto, si stima un aumento di 0,002 per anno (R²=0.72; p<0,00001).

L'inbreeding medio annuo per consanguinei presenta un andamento logaritmico:

 $y = -0.046 \ln(x) + 0.253$; $R^2 = 0.87$. Attualmente si evidenzia una tendenza alla stabilità del coefficiente di inbreeding.

Confronto fra soggetti morti e vivi

In tabella si presentano i risultati del confronto fra l'analisi dei pedigree per i soggetti morti e vivi.

Parametro	Morti	Vivi
Individui	34.236	10.552
Accoppiamenti	10502	8379
Fondatori	2682	38
Individui con 2 genitori conosciuti	31412	10514
Individui senza progenie	24266	9470
Inbreeding medio per soggetto	0.038	0.079
Inbreeding medio per consanguinei	0.123	0.099
<i>Inbreeding</i> Max	0.594	0.594
<i>Inbreeding</i> Min	0,000	0,000
Coefficiente di parentela medio	0.008	0.027
Generazioni discrete* - Media	3.10	6.18
Generazioni discrete* - Max	7.21	9.86
Generazioni discrete* - Min	0	0

*) generazioni che non si sovrappongono

Dall'analisi della tabella si evidenziano due elementi interessanti:

- ✓ il **coefficiente di** *inbreeding* medio per i soggetti "vivi" è di **0,079**, valore degno di attenzione, soprattutto se comparato a quello della rimanente popolazione pari allo 0,038;
- √ il coefficiente di inbreeding a livello di consanguinei è, sempre per i soggetti "vivi", mediamente alto essendo prossimo al 10%;
- ✓ il **coefficiente di parentela** medio per i soggetti "vivi" è di **0,027**, valore non preoccupante, anche se decisamente superiore rispetto al resto della popolazione (0,008).

Gli aspetti evidenziati caratterizzano una situazione di maggiore frequenza di accoppiamenti fra individui con un livello di consanguineità superiore a quello medio della popolazione.

Valutazione degli stalloni con maggiore incidenza sulla popolazione

Nella seguente tabella vengono presentate le frequenze assolute e percentuali degli stalloni per numero di nati, per classe di frequenza (definita pari a 50 nati).

Classe (limite sup.)	n	%
50	5179	97.8
100	89	1.7
150	19	0.4
200	5	0.1
250	2	0.0
300	2	0.0
350	1	0.0
TOTALE	5297	100

Dall'analisi della tabella risulta che la quasi totalità degli stalloni (97,8%) hanno generato meno di 50 soggetti.

E' stata valutata l'incidenza degli stalloni (n=26) nella popolazione identificando gli stalloni (n=26) che hanno generato almeno 100 individui (**TopSire**).

Stallone	Progenie (n)
ST371302	322
ST289572	297
LO98150845	293
ST232753	228
ST383138	226

180
178
175
165
161
150
149
145
145
143
139
135
135
133
126
126
124
123
114
112
107
104
102
101

E' stata quindi studiata la sottopopolazione relativa alla progenie generata dai TopSire, ottenendo i seguenti risultati.

Parametro	TopSire
Individui	4893
Accoppiamenti	993
Fondatori	257
Individui con 2 parenti conosciuti	4626
Inbreeding medio per soggetto	0.046
Inbreeding medio per consanguinei	0.225
<i>Inbreeding</i> massimo	0.500
<i>Inbreeding</i> minimo	0.031
Coefficiente di parentela medio	0.029
Generazioni discrete* - Media	1.465
Generazioni discrete* - Max	3.625
Generazioni discrete*- Min	0

*) generazioni che non si accavallano

Dall'analisi della tabella si evince che il coefficiente d'*inbreeding* medio per consanguinei è molto elevato, essendo pari a 0,225, risulta pertanto della massima urgenza la gestione degli accoppiamenti programmati per livello di parentala nell'ambito dei riproduttori di maggior richiesta.

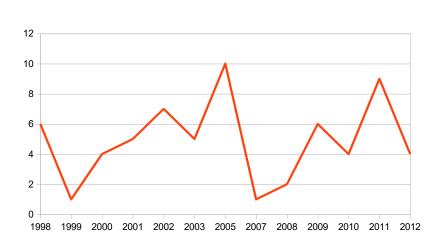
Setter Irlandese Rosso e Bianco (330)

Dataset

La codifica utilizzata per il campo LL_CANE presentava diverse sottostringhe iniziali di due caratteri, con preponderanza di "ES", come da seguente tabella.

Tipo matricola	n	%
ES	101	49,5
LO	63	30,9
ST	6	2,9
ZZ	34	16,7
TOTALE	204	100,0

Il campo DATA_NASCITA, non era determinato per 130 individui, pari al 64 % del totale.


Al fine di valutare la completezza del dataset è stata valutata la situazione della registrazione degli ascendenti (LL_PADRE, LL_MADRE) per individuo, evidenziando che circa il 91% dei record risultava completo.

	Ascendenti conosciuti per soggetto		n	%
	PADRE	MADRE		
Fondatori			64	31,4
Fondatori			0	0
			0	0
			140	68,6
	TOTALE		204	100,0

Dall'analisi della tabella risultano 64 (31,4 %) **fondatori** (individui dei quali non sono registrati padre e/o madre).

Nella seguente tabella sono riportate le **iscrizioni** per anno.

Anno	Iscrizioni	
Anno	n	%
1997	6	2.9
1998	6	2.9
1999	1	0.5
2000	4	2.0
2001	5	2.5
2002	7	3.4
2003	5	2.5
2005	10	4.9
2007	1	0.5
2008	2	1.0
2009	6	2.9
2010	4	2.0
2011	9	4.4
2012	4	2.0
n.d.	134	<i>65.7</i>
TOTALE	204	100.0

Sono state verificate le **registrazioni complete** (2 genitori noti) per anno di nascita dei soggetti ed i dati sono riportati nella seguente tabella.

ANNO	Soggetti con	Individui
	2 genitori noti	senza progenie
1997	7	5
1998	5	5
1999	1	1
2000	4	3
2001	8	7
2002	5	4
2003	4	3
2004	1	0
2005	10	8
2006	1	1
2007	-	-
2008	3	3
2009	7	5
2010	12	12
2011	-	-
2012	3	3
2013	-	-
n.d.	69	11
Totale	140	71

Di seguito si riporta la tabella con la ripartizione dei soggetti **registrati per provincia**.

Provincia	n	%
AP	1	0,5
BG	1	0,5
ВО	1	0,5
CS	1	0,5
GR	1	0,5
MC	6	2,9
MI	2	1,0
MS	1	0,5
PD	1	0,5
PG	1	0,5
ΡΙ	3	1,5
PO	1	0,5
RM	26	12,7
TE	1	0,5
VB	1	0,5
n.d.	156	76,5
TOTALE	204	100,0

Dall'analisi della tabella si evidenzia che la maggior parte dei record non presenta la codifica della provincia (76,5%). La provincia maggiormente rappresentata, con 26 soggetti, è Roma.

Il numero delle diverse codifiche dei **proprietari** è pari a 52.

Analisi delle genealogie

Studio dei riproduttori e della loro progenie

Nella seguente tabella vengono riportate le statistiche descrittive relative allo studio degli accoppiamenti che consente di caratterizzare i riproduttori, la progenie e le famiglie.

Parametro	n
Individui totali	221
Accoppiamenti	7

Individui con progenie	150
Individui senza progenie	71

Di seguito viene riportata la situazione dei riproduttori (individui con progenie) dalla quale si evince che i maschi rappresentano il 48,7% e le femmine il 51,3% del totale.

Comoro	Riproduttori		Progenie
Genere	n	%	generata
Stalloni	73	48,7	140
Fattrici	77	51,3	140
TOTALE	150	100,0	

Di seguito si riportano i risultati dello studio dei **fondatori** e dei **non-fondatori**.

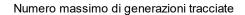
Fondatori		Progenie
Padri	38	83
Madri	37	63
Senza progenie	6	
TOTALE	81	87

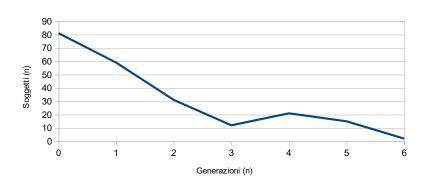
NON Fondatori		Progenie
Padri	35	57
Madri	40	77
Solo Padre conosciuto	0	
Solo Madre conosciuta	0	
TOTALE	140	

Di seguito viene riportato l'andamento per anno dei soggetti nati e degli accoppiamenti.

ANNO	Soggetti	Accoppiamenti
1997	7	0
1998	5	0
1999	1	1
2000	4	0
2001	8	0
2002	5	0
2003	4	1
2004	1	0
2005	10	0
2006	2	0
2007	0	0
2008	4	0
2009	7	0
2010	13	0
2011	0	0
2012	3	2
2013	0	0
n.d.	130	3
Totale	221	7

Gli anni maggiormente rappresentati risultano essere il 2005 ed il 2010.


Tramite analisi delle nascite sono state valutate le **famiglie**, delle quali si riporta di seguito la caratterizzazione.


Parametro	n
Gruppi di Fratelli Pieni	14
Dimensione Media delle Famiglie	4,93
Massimo	20
Minimo	2

Nella tabella seguente si presenta la valutazione della profondità dell'informazione genealogica, ossia del numero di generazioni di antenati.

Generazioni tracciate	Soggetti (n)
0	81
1	59
2	31
3	12
4	21
5	15
6	2

Studio della consanguineità sull'intera popolazione

Di seguito si riporta lo studio di frequenza dei coefficienti di inbreeding.

Limite Sup. Classe di inbreeding	n	%	Livello
0,05	1	14,3	A coottobile
0,10	2	28,6	Accettabile
0,15	3	42,8	
0,20	0		
0,25	1	14,3	
0,30	0		
0,35	0		Alba
0,40	0		Alto
0,45	0		
0,50	0		
0,55	0		
0,60	0		

Dall'analisi della tabella si evidenzia che il valore dei coefficienti di *inbreeding* si distribuiscono fra i valori 0,00 e 0,50.

Sono compresi fra valori di F pari allo 0,00 e lo 0,10 il 42,9% degli individui, mentre il 57,1% dei soggetti presentano livelli di *inbreeding* alti.

	Inbreeding			Davantala	
ANNO	medio	medio per acc.	max	min	Parentela media
1997					0,357
1998					0,400
1999	0,063	0,063	0,063	0,063	0
2000					0,500
2001					0,330
2002					0,500
2003	0,023	0,094	0,094	0,094	0,250
2004					0
2005					0,500
2006					0
2007					-
2008					0,083
2009					0,384
2010					0,272
2011					0,068
2012	0,089	0,133	0,250	0,016	-
2013					-
n.d.	0,003	0,125	0,125	0,125	0,013
Totale	0,004	0,114	0,250	0,016	0,026

Dato l'esiguo numero di dati non è possibile eseguire l'analisi dell'andamento dell'inbreeding per anno. Risulta comunque necessario segnalare l'alto valore di inbreeding per cucciolata dell'anno 2012, segno di utilizzo di alta consanguineità negli accoppiamenti.

Confronto fra soggetti morti e vivi

In tabella si presentano i risultati del confronto fra l'analisi dei pedigree per i soggetti morti e vivi.

Parametro	Morti	Vivi
Individui	143	61
Accoppiamenti	4	3
Fondatori	61	3
Individui con 2 genitori conosciuti	82	58
Individui senza progenie	22	49
Inbreeding medio per soggetto	0,003	0,006
Inbreeding medio per consanguinei	0,109	0,120
Inbreeding Max	0,125	0,250
Inbreeding Min	0,063	0,017
Coefficiente di parentela medio	0,015	0,122
Generazioni discrete* - Media	2,34	0,85
Generazioni discrete* - Max	2,34	0,85
Generazioni discrete* - Min	0	0

^{*)} generazioni che non si accavallano

Dall'analisi della tabella si evidenziano due elementi interessanti:

- ✓ il **coefficiente di** *inbreeding* **per soggetto** medio per i "vivi" risulta basso (0,006);
- √ il coefficiente di inbreeding per consanguinei medio, sempre per i "vivi", è alto essendo pari al 12%;
- ✓ il **coefficiente di parentela** medio per i soggetti "vivi" è alto con un valori di 0,122.

La popolazione è molto piccola, pertanto non è una sorpresa un alto coefficiente di parentela. In questa situazione è pertanto particolarmente cruciale la scelta dei riproduttori da usare per generare la cucciolata.

Valutazione degli stalloni con maggiore incidenza sulla popolazione

E' stata valutata l'incidenza degli stalloni nella popolazione identificando gli stalloni che hanno generato almeno 2 individui.

Stallone	Progenie
ST550294	20
LO0384044	16
ES10196815	10
LO0013259	7
LO0592742	4
LO994496	3
ES0080161	2
ES03144423	2
ES03144425	2
ES03144433	2
ES0764489	2
ES0764490	2
ES10118178	2
ES10196808	2
ES1221616	2
ES1221629	2
ZZ8627980	2
ZZ9163460	2
ZZ9163500	2

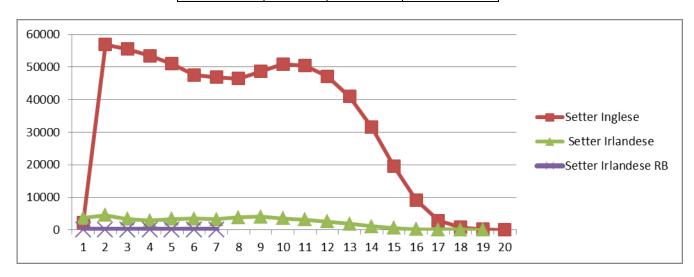
Di seguito si riporta la valutazione dei coefficienti di inbreeding dei soggetti non fondatori, analizzati.

Istituto Spallanzani, Rivolta d'Adda, Cremona

Soggetti	Coefficiente d'inbreeding
ES03144426	0.125
ES044502	0.125
LO12154987	0.250
ES10196813	0.125
LO0013260	0.063
LO03144435	0.093
LO1276953	0.016

Dei 7 soggetti analizzati si evidenziano alti valori di inbreeding per 4 soggetti.

Considerazioni conclusive


Di seguito vengono comparati i principali risultati ottenuti dall'analisi della genetica di popolazioni delle razze Setter Inglese ed irlandese rosso e R-B.

La **consistenza numerica**, in termini di individui presenti nei dataset, è la seguente.

Setter Inglese	Setter Irlandese Rosso	Setter Irlandese Rosso e Bianco
666.124	44.788	204

Di seguito si riporta la tabella comparativa ed il relativo grafico circa la profondità dell'informazione genealogica (**generazioni tracciate**) dalle quale si evince che per il Setter Inglese ed irlandese la situazione è simile disponendo per un buon numero di soggetti di almeno 13 generazioni tracciabili, mentre per il Setter Irlandese RB la situazione risulta ovviamente inficiata dal basso numero di soggetti presenti, potendo tracciare essenzialmente 5 generazioni.

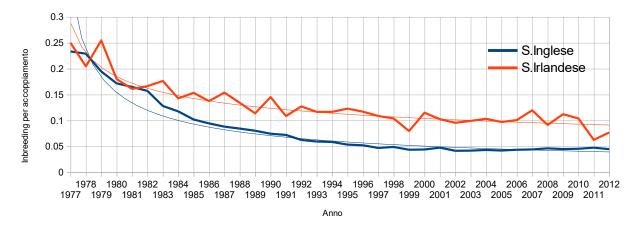
Generazioni	Setter	Setter	Setter
tracciate	Inglese	Irlandese	Irlandese RB
0	2193	3619	81
1	56937	4559	59
2	55590	3367	31
3	53483	2876	12
4	51004	3347	21
5	47561	3476	15
6	46875	3265	2
7	46514	3859	
8	48687	4052	
9	50936	3511	
10	50423	3179	
11	47217	2528	
12	40991	1929	
13	31521	1122	
14	19580	583	
15	9123	246	
16	2877	79	·
17	814	66	
18	199	24	
19	7		·


Nella seguente tabella vengono confrontate le frequenze per classe di inbreeding relative agli individui presenti nei data set.

Limite Sup. Classe di inbreeding	Setter inglese		Setter irlandese		Setter irlandese RB	
	n	%	n	%	n	%
0,05	213.806	68.0	7.226	38.3	1	14,3
0,10	44.035	14.0	3.201	17.0	2	28,6
0,15	29.833	9.5	2.935	15.5	3	42,8
0,20	10.763	3.4	1.707	9.0	0	
0,25	8.526	2.7	1.828	9.7	1	14,3
0,30	5.884	1.9	793	4.2	0	
0,35	1.227	0.4	395	2.1	0	
0,40	422	0.1	447	2.4	0	
0,45	81	0.0	126	0.7	0	
0,50	31	0.0	132	0.7	0	
0,55	9	0.0	57	0.3	0	
0,60	3	0.0	34	0.2	0	

Considerando la frequenza cumulativa dei soggetti con coefficiente di inbreeding entro il 10% si evidenziano chiare differenze fra le tre razze, con valori del 82% per il Setter Inglese e del 55% e 43% rispettivamente per il Setter Irlandese ed il Setter Irlandese RB.

Per le successive considerazioni comparative non è stata considerata la razza Setter Irlandese RB data l'esiguità degli individui presenti in data set.


Nel seguente grafico viene riportato il confronto fra **l'andamento medio dell'inbreeding per soggetto nei vari anni**, a partire dal 1977, anno con dati presenti per le due razze.

Dall'analisi del grafico si evidenzia che le due razze mantengono sostanzialmente valori accettabili (sotto al 10%), pur costantemente superiori per il Setter Irlandese.

Nel seguente grafico viene riportato il confronto fra **l'andamento medio dell'inbreeding per consanguinei nei vari anni**, sempre a partire dal 1977.

Dall'analisi del grafico si evidenzia che mentre il Setter Inglese si attesta su valori medi d'*inbreeding* per accoppiamento relativamente bassi, il Setter Irlandese fino al 2010 presentava valori di inbreeding tendenzialmente superiori al 10%.

Nella seguente tabella si riassume in termini comparativi la situazione, in termini di consanguineità, derivante dall'attività degli stalloni maggiormente richiesti.

	Top Sire			
Parametro	Setter	Setter		
	Inglese	Irlandese		
Individui	42.073	4.893		
Accoppiamenti	2.717	993		
Fondatori	3.411	257		
Individui con 2 parenti conosciuti	38.662	4.626		
Inbreeding medio per soggetto	0,008	0,046		
Inbreeding medio per consanguinei	0,128	0,225		
<i>Inbreeding</i> massimo	0,375	0,500		
<i>Inbreeding</i> minimo	0,004	0,031		
Coefficiente di parentela medio	0,009	0,029		
Generazioni discrete - Media	1,358	1,465		
Generazioni discrete - Max	3,719	3,625		
Generazioni discrete - Min	0	0		

Dall'analisi della tabella risulta che il coefficiente d'*inbreeding* medio per consanguinei è alto per le due razze, con valori decisamente elevati per il Setter Irlandese (22,5%).

Nella seguente tabella si riassume in termini comparativi la situazione, differenziando fra individui nati prima del 2000 (considerati "morti") e quelli nati dal 2000 (considerati "vivi"). Con questa classificazione è possibile caratterizzare, in maniera semplice, la situazione "storica", riguardante soggetti non più attivi a livello riproduttivo, con la situazione "attuale", relativa ai soggetti potenzialmente ancora attivi.

Parametro	Setter Inglese		Setter Irlandese		Setter Irlandese RB	
	Morti	Vivi	Morti	Vivi	Morti	Vivi
Individui	440.222	225.902	3 4 236	10552	143	61
Accoppiamenti	112.682	201.938	10502	8379	4	3
Fondatori	5.767	18	2682	38	61	3
Individui con 2 genitori conosciuti	434.057	225.883	31412	10514	82	58
Individui senza progenie	338.396	196.106	24266	9470	22	49
Inbreeding medio per soggetto	0,016	0,040	0.038	0.079	0,003	0,006
Inbreeding medio per consanguinei	0,064	0,044	0.123	0.099	0,109	0,120

Istituto Spallanzani, Rivolta d'Adda, Cremona

Inbreeding Max	0,563	0,523	0.594	0.594	0,125	0,250
<i>Inbreeding</i> Min	0,000	0,000	0,000	0,000	0,063	0,017
Coefficiente di parentela medio	0,003	0,023	0.008	0.027	0,015	0,122
Generazioni discrete* - Media	3,07	6,36	3.10	6.18	2,34	0,85
Generazioni discrete* - Max	7,94	9,78	7.21	9.86	2,34	0,85
Generazioni discrete* - Min	0	0	0	0	0	0

La situazione per quanto concerne il Setter Inglese risulta adeguata, mentre è potenzialmente critica per i Setter Irlandesi: per le due razze per quanto concerne il coefficiente di inbreeding per soggetto e per il Setter Irlandese Rosso e Bianco anche per il coefficiente di parentela medio. Per i Setter irlandesi razze diventa pertanto estremamente importante la gestione oculata degli accoppiamenti, utilizzando strumenti per la stima della consanguineità dei riproduttori.

Ritorni applicativi

Considerando l'attenzione che la situazione, in termini di consanguineità, del Setter Irlandese impone, è necessario sviluppare strumenti di gestione degli accoppiamenti, in grado di controllare il livello di inbreeding della popolazione.

L'Istituto Spallanzani ha messo a punto tali strumenti, progettando applicativi in grado di svolgere le sequenti task:

- √ dato il codice di razza e le matricole dello stallone e della fattrice → calcolo del coefficiente di
 parentela dei riproduttori e di inbreeding della cucciolata;
- ✓ dato il codice di razza, la matricola dello stallone o della fattrice, il valore limite per il
 coefficiente di inbreeding della cucciolata → identificazione della fattrice o dello stallone
 «adeguati» in funzione del vincolo di ricerca (regione, provincia, ...).

Definendo soglie di attenzione adeguate per il coefficiente di inbreeding risulta così possibile mantenerlo entro limiti adeguati e garantire la conservazione di quella variabilità genetica di razza, presupposto imprescindibile per future attività di miglioramento selettivo.